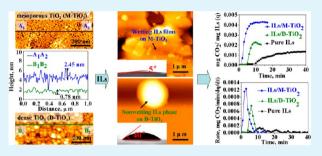
Wetting Behavior of Ionic Liquid on Mesoporous Titanium Dioxide Surface by Atomic Force Microscopy


Rong An, Yudan Zhu, Nanhua Wu, Wenlong Xie, Jiawei Lu, Xin Feng, and Xiaohua Lu*

State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing University of Technology, 5 Xinmofan Road, Nanjing 210009, P. R. China

ABSTRACT: Ionic liquids based on 1-butyl-3-methylimidazolium hexafluoro-phosphate (ILs $[Bmim][PF_6]$) has been employed to wet the mesoporous and dense titanium dioxide (TiO₂) films. It has been found from atomic force microscopy (AFM) analysis that ILs $[Bmim][PF_6]$ can form a wetting phase on mesoporous TiO₂ films, but nonwetting and sphere shaped droplets on dense films. AFM topography, phase images, and adhesion measurements suggest a remarkable dependence of wetting ILs $[Bmim][PF_6]$ films on the TiO₂ porous geometry. On mesoporous TiO₂ films, the adhesive force of ILs $[Bmim][PF_6]$

& INTERFACES

ACS APPLIED MATERIALS

Research Article

www.acsami.org

reaches at 40 nN, but only 4 nN on dense TiO₂ films. The weak interacting ILs [Bmim][PF₆] on dense TiO₂ films forms rounded liquid spheres (contact angle as 40°), which helps to reduce friction locally but not on the whole surface. The stronger adhesive force on mesoporous TiO₂ films makes ILs [Bmim][PF₆] adhere to the surface tightly (contact angle as 5°), and this feature remains after five months. The stable spreading ILs [Bmim][PF₆] films provide low friction coefficient (0.0025), large wetting areas, and short CO₂ diffusion distance on the whole mesoporous TiO₂ surface, avoiding the significant decelerating effect through equilibrium limitations to enable CO₂ capture rate up to 1.6 and 10 times faster than that on dense TiO₂ and pure ILs, respectively. And importantly, ILs wetted on mesoporous TiO₂ shorten the time reaching to the maximum adsorption rate (2.8 min), faster than that on mesoporous TiO₂ (6.1 min), and dense TiO₂ (11.2 min). This work provides an important guidance for the improvement of the efficiency of CO₂ capture, gas separation, and the lubrication of micro/ nanoelectromechanical systems (M/NEMs).

KEYWORDS: ionic liquid, mesoporous TiO₂, wetting, AFM, adhesive force, friction, CO₂ capture

1. INTRODUCTION

Ionic liquids (ILs) are ionic compounds consisting of large organic cations and various kinds of anions that exist in the liquid state over a wide temperature range.¹ ILs possess unique and desirable physicochemical properties, such as high chemical and thermal stabilities, low vapor pressure, high thermal conductivity, and excellent solubility for a wide range of organic and inorganic compounds.²⁻⁴ Therefore, ILs have attracted considerable interests in various fields,⁵ such as CO₂ capture,^{6,7} gas separation,^{8,9} and energy production/storage.¹⁰ Recently, ILs have been considered as a new promising class of lubricants that could significantly improve the wear life in micro/nanoelectromechanical systems (M/NEMs).¹¹⁻¹³ However, there are still some challenges, such as corrosion and oxidation,^{14,15} while using in different systems, including solvents for synthesis and catalysis,⁴ dye-sensitized solar cells,¹⁶ lubricating oils,^{14,17} CO_2 separation,⁷ and so on. Among all these cases, in essence, the device performance strongly depends on the wetting behavior at interface between ILs and solid surfaces.⁵ The durability of IL films on various substrates has been explored from the standpoint of film formation (wettability).¹⁸ Many strategies,¹⁹ such as solid-ification with gelating agents^{16,20} and nanoparticles,²¹ the incorporation of ILs into polymer networks,²² confinement in

inorganic gels,²³ etc., have been investigated to solidify the ILs into self-supporting solid surfaces. Nevertheless, it has been proved that many advantages of a pure IL would be obviated when adding these materials.²⁴ Moreover, these treatments based on polymers and organic gels, just like organic self-assembled monolayers (SAMs), are susceptible to oxidization, hydrolyzation, or degradation.^{25–27}

Titanium (Ti) has been acknowledged as a favorable structural material and used in many fields because of its high mechanical strength, low density, and excellent anticorrosion property.^{28,29} Generally, a native dense titanium dioxide (TiO₂) layer^{30–32} could form on the Ti surface, which prevents the bulk Ti from further corrosion and oxidation. That is to say, the TiO₂ layer on Ti could conquer the foresaid challenges in ILs applications, for example, identified corrosion and oxidation.^{14,15} However, the dense TiO₂ films formed on Ti can not support ILs in the form of well-packed layers. To solve the problem, we adopted a promising approach that the porous solid matrix could immobilize ILs³³ as stable films. The idea was enlightened by the fact that a fishing net can support water

Received: January 15, 2013 Accepted: March 6, 2013 Published: March 6, 2013

films on its millimeter-sized holes.³⁴ We replaced the dense TiO_2 films by mesoporous TiO_2 films to provide porous surface matrix to further immobilize ILs. Combined with the high sensitivity in nanoscale,^{35,36} atomic force microscopy (AFM) offers an effective way to explore the molecular-level factors governing IL behavior on various surfaces.

In this work, we report on the direct observation of wetting behavior of 1-butyl-3-methylimidazolium hexafluoro-phosphate ([Bmim][PF₆]) layers on mesoporous TiO_2 films by AFM. The performance characteristic of the ILs wetted on developed mesoporous TiO_2 materials for CO_2 adsorption was further determined by quantitative analysis of TG (thermogravimetry) apparatus. Noting that [Bmim][PF₆], not an excellent CO_2 adsorbent, being studied extensively, can serve as well-defined model systems to study the behavior of surfaces on the ILs and the effects on CO_2 adsorption. In comparison, the CO_2 adsorption performance of the ILs on dense TiO_2 is also explored.

2. EXPERIMENTAL SECTION

Both of the mesoporous TiO₂ (M-TiO₂) and dense TiO₂ films (D-TiO₂) could be prepared by the methods as reported previously.³⁷ Both films are employed as the substrate to adsorb a prototype ionic liquid (1-butyl-3-methylimidazolium hexafluoro-phosphate, [Bmim]-[PF₆]). The ILs [Bmim][PF₆] concentration in acetone solution was typically kept below 1 × 10⁻³ mg/mL. The M-TiO₂ and D-TiO₂ films were immersed in the IL solutions and equilibrated for 6 h. Then they were taken out, allowing acetone to completely evaporate in air, leaving behind IL layers and droplets. To make the acetone evaporation process slower and obtain uniform coatings, the samples were cured in a saturated acetone atmosphere during evaporation.

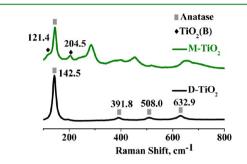
An Autoprobe CP-Research AFM with an atomic head of 100 × 100 μ m² scan range from Bruker Instruments was used. The AFM was operated in contact and tapping mode in air by silicon cantilevers with the spring constants of 0.01–0.5 N/m. Typically, image scan size was between 1 μ m × 1 μ m and 5 μ m × 5 μ m with scan speed of 1.00 Hz. AFM data have been analyzed by the second order flattening using Proscan (version 2.1) software.

The force measurements were performed in contact mode. A force–distance curve could be obtained in contact mode. The cantilever is bent up during approach, while during retraction, it is bent down. And then the cantilever will restore its original state as soon as the tip overcomes adhesive force from the surface. The adhesive force, that is, pull-off force, is the force jump during retraction.³⁸ Measured values were reproducible for five identical samples (over five independent positions for each sample, in air, at 25 °C, relative humidity ~47%, and only the retract part of the force curves is shown here).

The friction force was measured as the probe scanned the surface along the *x*-axis. The lateral force increases linearly with the normal force for Si tip and the TiO₂ films. Measured values were reproducible for five identical samples (over five independent measurements for each sample, in air, at 25 °C, relative humidity ~47%).

The specimen (M-TiO₂ and D-TiO₂ films) morphologies were evaluated by Field emission scanning electron microscopy (FESEM) using a Hitachi S-4800 (FEI, Japan) system at room temperature (20 \pm 2 °C).

Raman spectroscopy was carried out on a Horiba Labram HR 800 Raman spectroscope (514 nm He–Cd laser, laser power: 20 mW) to detect the crystalline phases existing in M-TiO₂ and D-TiO₂ films.


Contact angles were measured by a SL200B (Solon technology science Co, China) at room temperature and ambient humidity. Six drops of water were placed on each sample using a manual syringe fixture. To further confirm the reproducibility, three samples were tested for both M-TiO₂ and D-TiO₂ films.

The weight changes for CO_2 adsorption on pure ILs [Bmim][PF₆] and on ILs [Bmim][PF₆] immobilized on mesoporous TiO₂ and dense

 $\rm TiO_2$ over a constant temperature 35 $^{\circ}\rm C$ are monitored by thermogravimetry (TG) analysis in a thermobalance (TG/c-DTA, Netzsch, Germany). Prior to that, each specimen needed nitrogen (N_2) purging for 30 min.

3. RESULTS AND DISCUSSION

The Raman spectrum of the M-TiO₂ films is shown in Figure 1 together with that of D-TiO₂ films for comparison. The

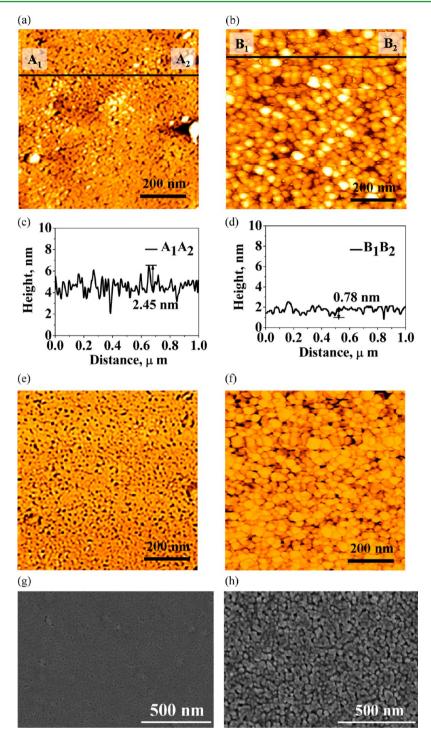


Figure 1. Raman spectra of the M-TiO₂ and D-TiO₂ films. The Raman vibrational bands of anatase phase are marked in solid squares and TiO₂-B phase are marked in solid diamonds.

structure which shows identical Raman spectra was identified as anatase at 142.5, 391.8, 508.0, and 632.9 cm⁻¹, in both M-TiO₂ and D-TiO₂ films. Notably in M-TiO₂ films, exposure of potassium ditianate (K₂Ti₂O₅) films to water vapor, followed by ion exchange and sintered at 500 °C, produced a crystalline solid which exhibits the distinct Raman spectra at 121.4 and 204.5 cm⁻¹ due to TiO₂-B phase. The TiO₂-B phase is beneficial to the mesoporous TiO₂ thermal stability³⁹ and different from the phases of anatase, rutile, and brookite TiO₂.^{40,41}

To further investigate the two TiO₂ films, the surface morphologies of the M-TiO₂ and D-TiO₂ films were studied by AFM where nanopores (~15-20 nm) and packed particles (~50 nm) were observed on M-TiO₂ (Figure 2a) and D-TiO₂ (Figure 2b), respectively. The cross sectional line profile A_1A_2 in Figure 2c shows the presence of pores along the M-TiO₂ surface that are ~ 20 nm in width and ~ 2.45 nm in depth on a scanned area equivalent to 1 μ m². The observed line profile B_1B_2 on D-TiO₂ surface (Figure 2d) is relatively flat with particles that are \sim 50 nm in width and \sim 0.78 nm in height on a $1 \ \mu m^2$ scanned area. The contracts come from the different viscoelastic properties and surface energy of the materials⁴²⁻⁴⁴ in AFM phase images. Therefore, different surface morphologies for these two types of TiO2 surfaces were further demonstrated by the phase images in Figure 2e and 2f to further distinguish the features. The distributed nanopores phases are clearly observed on the M-TiO₂ films in Figure 2e. In contrast, the homogeneously distributed nanoparticles are seen on the D-TiO₂ films as shown in Figure 2f. The M-TiO₂ and D-TiO₂ films were also examined by FESEM images in Figure 2g and 2h. These observations are in agreement with those detected by AFM measurements which demonstrate that the M-TiO₂ films surface has a high degree of pores with diameters of about 15-20 nm and D-TiO2 films consist of densely packed particles of about 50 nm.

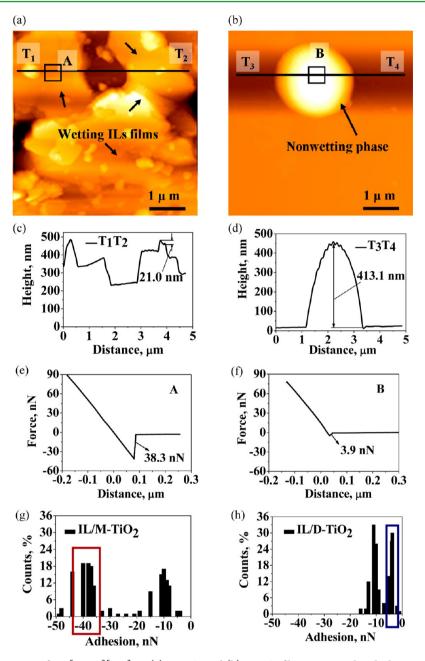

When a a rigorous protocol for the statistical analysis of AFM images is applied, quantitative information on the structural properties of ILs [Bmim][PF₆] films can be obtained. Figure 3 shows the AFM topographies of [Bmim][PF₆] coatings on M-TiO₂ and D-TiO₂ films as well as their corresponding statistic

Figure 2. AFM topographic images of (a) M-TiO₂ and (b) D-TiO₂ films, respectively. The line profiles along the (c) A_1A_2 line and (d) B_1B_2 line, respectively. The corresponding AFM phase images of (e) M-TiO₂ and (f) D-TiO₂ films. The FESEM images of (g) M-TiO₂ and (h) D-TiO₂ films. The vertical scales are 12 nm in panels a and b and 54° in panels e and f.

results. Figure 3a shows multilayer stacking of ILs [Bmim]-[PF₆] wetting on M-TiO₂ films. It is different from the ILs behavior revealed on D-TiO₂ films, which exhibits nonwetting phase on rounded domains in Figure 3b. Figure 3c is the height profile along the line T_1T_2 in Figure 3a, which shows that the thickness of each [Bmim][PF₆] layer is in different multiples of 5-150 nm range on M-TiO₂ films. While the ILs [Bmim][PF₆] aggregate themselves as rounded domains on D-TiO₂ films and the height could even reach 413.1 nm shown in the line profile T_3T_4 (Figure 3d). The adhesion behavior of ILs [Bmim][PF₆] on the M-TiO₂ films is provided in Figure 3e. The adhesive force of ILs [Bmim][PF₆] on D-TiO₂ films is also shown in Figure 3f for a comparison. It is observed that the adhesive force of ILs [Bmim][PF₆] on M-TiO₂ is stronger (38.3 nN) than on D-TiO₂ (3.9 nN). Hence, the stronger adhesive force further lead to M-TiO₂ films being easily occupied by multilayer stack of [Bmim][PF₆] wetting phases. However, the ILs [Bmim][PF₆] aggregate together on D-TiO₂ films, showing a more pronounced tendency to form nonwetting phases. The adhesion distribution of ILs [Bmim][PF₆] on M-

Research Article

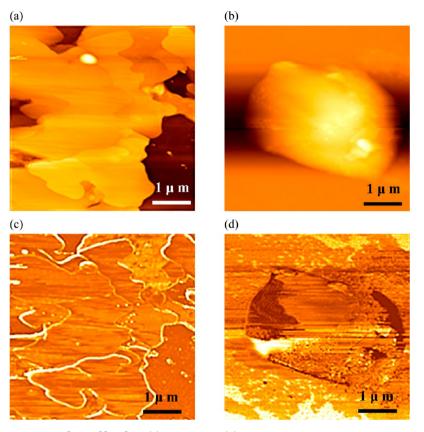


Figure 3. AFM topographic images of ILs [Bmim][PF₆] on (a) M-TiO₂ and (b) D-TiO₂ films, respectively. The line profiles along the (c) T_1T_2 line and (d) T_3T_4 line, respectively. The adhesive forces measured at (e) the points A on M-TiO₂ films and (f) the point B on D-TiO₂ films, where A and B are on the top of ILs [Bmim][PF₆]. The histogram of adhesive forces measured at ~155 different positions on the area of 5 μ m × 5 μ m of (g) M-TiO₂ and (h) D-TiO₂ films, respectively. The vertical scales in panels a and b are 600 nm.

TiO₂ films is shown in Figure 3g. We observe a bimodal distribution, that is, heterogeneous distribution,⁴⁵ centered around 40 and 10 nN, respectively, because of the ILs [Bmim][PF₆] and the TiO₂ films.³⁷ Figure 3h also shows a heterogeneously⁴⁵ bimodal adhesion distribution of ILs [Bmim][PF₆] on D-TiO₂ films, which centers around 10 and 4 nN corresponding to the TiO₂ films³⁷ and ILs [Bmim][PF₆], respectively. Apparently, ILs [Bmim][PF₆] can form a wetting films on M-TiO₂ films by stronger interactions, while a round nonwetting sphere on D-TiO₂ films formed due to weaker interfacial interactions. Noting that the observed layers on M-TiO₂ and D-TiO₂ films have been imaged again after five months, and no changes on structure and topography have been observed. This demonstrates the features of ILs

 $[{\rm Bmim}][{\rm PF}_6]$ spreading out on M-TiO₂ films are extremely stable even in ambient (humid) conditions. $[{\rm Bmim}][{\rm PF}_6]$ remains its weak wettability on D-TiO₂ films. According to the viewpoints in the literature,³⁴ the mesoporous surface topography of M-TiO₂ films may be very critical in determining the adhesion of ILs $[{\rm Bmim}][{\rm PF}_6]$ on M-TiO₂ surface as a wetting phase.

Figure 4 shows simultaneously recorded topographic and phase images of a region of $[Bmim][PF_6]$ coating on M-TiO₂ and D-TiO₂ films. The entrapment and immobilization of ILs $[Bmim][PF_6]$ on M-TiO₂ films are likely to "freeze" to form a multilayered wetting phase in Figure 4a, whereas sphere-shaped nonwetting phase is formed on D-TiO₂ films (Figure 4b). The "freezing" of ILs $[Bmim][PF_6]$ on M-TiO₂ films, which

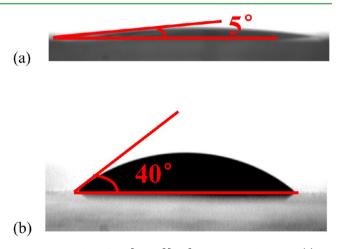
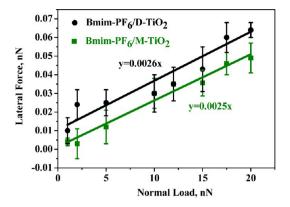


Figure 4. AFM topographic images of ILs [Bmim][PF₆] on (a) M-TiO₂ and (b) D-TiO₂ films, respectively. AFM phase images of ILs [Bmim][PF₆] on (c) M-TiO₂ and (d) D-TiO₂ films. The vertical scales are 80 nm in panels a and b and 36° in panels c and d.

consisted of 15–20 nm pores, exhibits a rich phase behavior that depends on the existence of the pores in nanoscale.^{46,47} It can be noticed in Figure 4c and 4d that a contrast between the IL layers, droplets, and TiO₂ films, which suggests that the ILs and TiO₂ are present in different phases. In Figure 4c, the comparison of phase signal of different materials (ILs [Bmim][PF₆] and TiO₂ films) indicates the ILs [Bmim][PF₆] phase (area surrounded by the white lines) are able to wet M-TiO₂ films well. Figure 4d shows the phase contrast between ILs [Bmim][PF₆] and D-TiO₂ films. It can be found that the elliptical region, representing the aggregating ILs [Bmim][PF₆] phase shown on D-TiO₂ films in Figure 4b.


Figure 5 shows the optical micrographs of ILs $[Bmim][PF_6]$ droplets on the two different TiO₂ surfaces. On M-TiO₂ surface, the ILs $[Bmim][PF_6]$ droplet shows the contact angle of 5°, consistent with the IL wetting phenomenon shown in Figures 3a and 4a and 4c. However, the ILs $[Bmim][PF_6]$ droplet has the contact angle of 40°, which corresponds to the nonwetting IL sphere shown in Figures 3b and 4b and 4d.

The friction coefficients of ILs [Bmim][PF₆] on M-TiO₂ and D-TiO₂ films as a function of lateral force for Si tip at various normal loads are shown in Figure 6. It can be found that the friction coefficients of ILs [Bmim][PF₆] on both of the TiO₂ films determined from the slopes of lateral force vs normal load plots are comparable (0.0025 for M-TiO₂ films, and 0.0026 for D-TiO₂ films). The observation indicates that tip can slip easily with the existence of ILs [Bmim][PF₆]. On M-TiO₂ films, ILs [Bmim][PF₆] possess a more pronounced tendency to form wetting phases, acting as excellent lubricant to further make the friction coefficient low. This is beneficial to surface adsorption and the surface in equilibrium to update to obtain a new

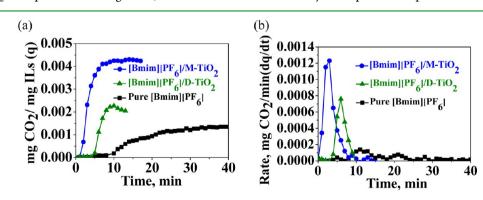
Figure 5. Droplets of ILs [Bmim][PF₆] in acetone solution on (a) M-TiO₂ and (b) D-TiO₂ films, respectively. A 5 μ L drop was formed at the end of a syringe and brought into contact with the surface. Six drops were placed on each test sample, with three test samples. The results were reproducible in the range $\pm 1-2^{\circ}$.

adsorbent surface. While on D-TiO₂ films, with tip scanning, the rounded and nonwetting ILs [Bmim][PF₆] sphere tends to roll on the surface, leading to the comparable low friction coefficient. The moving liquid-like IL sphere can not interact with the TiO₂ surface. Therefore, it is not favorable for transmission and surface update. Only some regions of D-TiO₂ surface can be covered by the weakly interacted liquid-like IL, which does not act as an excellent and stable lubricant for the whole system. The remaining bare D-TiO₂ surface still possesses high friction coefficient.³⁷

Figure 6. Summary of the lateral force vs normal load data recorded for ILs $[Bmim][PF_6]$ on the M-TiO₂, D-TiO₂ films, and AFM tip. The slopes of the lines represent the corresponding friction coefficients.

Under CO_2 conditions, on M-TiO₂ films, it is 2 and 4 times higher CO_2 adsorption flux than that on D-TiO₂ films and pure ILs [Bmim][PF₆], respectively (Table 1, Figure 7a). Table 1

Table 1. Surface Analysis of the M-TiO₂ and D-TiO₂ Films and CO_2 Adsorption Parameters


	$M-TiO_2$	D-TiO ₂	Pure ILs
surface average roughness, nm	0.980 ± 0.05	0.430 ± 0.15	
contact angle, deg	40	5	
maximum CO ₂ adsorption rate, mg/ min	0.0012	0.00074	0.00014
time to maximum $\rm CO_2$ adsorption rate, min	2.8	6.1	11.2
CO ₂ adsorption flux in equilibrium, mg/ mg ILs	0.0043	0.0021	0.0012
effective contact area of ILs, m ² /mg ILs	0.275	0.107	
thickness of ILs, nm	~5-150	~400	
CO ₂ adsorption in equilibrium per area, mg/ m ² ILs	0.016	0.020	

also indicates that the effective contact area of ILs on M-TiO₂ is 0.275 m², which is 2.6 times larger than that on D-TiO₂ (0.107 m²). Apparently, the CO₂ transfer area has been enlarged to 2.6 times by mesoporous structure on M-TiO₂, further leading to the 2 times higher CO₂ adsorption flux. It is significant that the wetting thicknesses of ILs on M-TiO₂ (~5–150 nm) and D-TiO₂ (~400 nm) combined with the transfer area could influence the CO₂ adsorption rate. In Figure 7b, ILs wetted on

M-TiO₂ enable capture rate of CO₂ up to 1.6 and 10 times faster than that on D-TiO₂ and pure ILs respectively, avoiding any significant decelerating effect through equilibrium limitations. In addition, the spreading ILs on M-TiO₂ reduces the time when it reaches to the maximum adsorption rate (2.8 min), faster than that on M-TiO₂ (6.1 min) and D-TiO₂ (11.2 min). Noting that CO_2 adsorption in equilibrium per area on M-TiO₂ is lower (0.16 mg CO_2/m^2 ILs) than that on D-TiO₂ (0.20 mg CO_2/m^2 ILs), which suggests that CO_2 adsorption is related not only with the wetting area, but with thickness, i, e. transfer area and diffusion distance. Therefore, the enlarged CO₂ transfer area and reduced diffusion distance arised from the excellent wettability of ILs, as well as the lower friction coefficient on the whole M-TiO₂, further accelerate the update of the surface in equilibrium to obtain a new adsorbent surface, producing highly efficient CO₂ capture.

4. CONCLUSIONS

We have shown that when a few multilayer of ILs $[Bmim][PF_6]$ are deposited on the mesoporous and dense TiO₂ surfaces, the whole ILs rearrange in a wetting phase on mesoporous TiO₂ films, but nonwetting rounded spheres on dense films. Our findings highlight the potentialities of AFM for the quantitative investigation of the interfacial properties of ILs films. On the mesoporous TiO₂ surface, ILs could be supported in the form of stable films. These observations could attribute to the strong adhesive force (40 nN) between ILs and mesoporous TiO₂ that the ILs could wet the mesoporous TiO₂ surface. In contrast, the adhesive force is weak (4 nN) between ILs and dense TiO₂ surface. Although the friction coefficient of ILs on the two TiO₂ surfaces are comparable as 0.0025, the rounded and nonwetting IL spheres on dense TiO₂ surface are apt to move along the surface, leaving the bare dense TiO2 surface still highly frictional. While on the whole meosporous TiO₂ surface, the ILs are employed to form a stable and lowly frictional films, which is favorable for CO₂ adsorption in equilibrium and the surface in equilibrium to update to further obtain a new adsorbent surface. A stable ILs film wetted on mesoporous TiO₂ surface will increase the efficient area of ILs and shorten the CO_2 diffusion distance, beneficial to CO_2 capture rate (1.6) and 10 times faster than ILs on dense TiO₂ and pure ILs, respectively) and they could further minimize the time (just 2.8 min) to the maximum adsorption rate (shorter than that on dense TiO₂ and pure ILs as 6.1 and 11.2 min, respectively). This study is expected to provide a new insight for the

Figure 7. (a) Experimental CO₂ absorption isotherm by model ILs [Bmim][PF₆] [Bmim][PF₆] immobilized on M-TiO₂ and D-TiO₂ at 35 °C, 1 bar. (b) Rate of CO₂ absorption on model ILs [Bmim][PF₆] and [Bmim][PF₆] immobilized on M-TiO₂ and D-TiO₂. Note that the stoichiometry of ILs with M-TiO₂ and D-TiO₂ approaches 1:13.

development of effective methods to promote CO_2 adsorption and gas separation.

AUTHOR INFORMATION

Corresponding Author

*Tel.: +86-25-83588063 Fax: +86-25-83588063. E-mail: xhlu@ njut.edu.cn.

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

The authors are grateful for the financial support of National 973 Key Basic Research Development Planning Program (2013CB733500), Key Project of National Natural Science Foundation of China (21136004), the General Projects of the National Natural Science Foundation of China (21176112, 21206070), Colleges and Universities in Jiangsu Province plans to graduate research and innovation (CXLX12_0446). We also wish to thank Jiahua Zhu at Lamar University, Qing Shao at University of Washington, and Yihui Dong at Nanjing University of Technology for many fruitful discussions.

REFERENCES

- (1) Luo, H. M.; Dai, S.; Bonnesen, P. V.; Buchanan, A. C.; Holbrey, J.
- D.; Bridges, N. J.; Rogers, R. D. Anal. Chem. 2004, 76, 3078–3083.
 (2) Stolte, S.; Steudte, S.; Areitioaurtena, O.; Pagano, F.; Thoming, J.;
- Stepnowski, P.; Igartua, A. Chemosphere **2012**, *89*, 1135–1141. (3) Liu, Y.; Wang, M. J.; Li, Z. Y.; Liu, H. T.; He, P.; Li, J. H.
- Langmuir 2005, 21, 1618–1622.
- (4) Welton, T. Chem. Rev 1999, 99, 2071–2084.
- (5) Bovio, S.; Podestà, A.; Lenardi, C.; Milani, P. J. Phys. Chem. B 2009, 113, 6600--6603.
- (6) Hasib-ur-Rahman, M.; Bouteldja, H.; Fongarland, P.; Siaj, M.; Larachi, F. Ind. Eng. Chem. Res. 2012, 51, 8711–8718.
- (7) Ramdin, M.; de Loos, T. W.; Vlugt, T. J. H. Ind. Eng. Chem. Res. 2012, 51, 8149-8177.
- (8) Hillesheim, P. C.; Mahurin, S. M.; Fulvio, P. F.; Yeary, J. S.; Oyola, Y.; Jiang, D. E.; Dai, S. *Ind. Eng. Chem. Res.* **2012**, *51*, 11530– 11537.
- (9) Zhao, W.; He, G. H.; Nie, F.; Zhang, L. L.; Feng, H. C.; Liu, H. J. J. Membr. Sci. **2012**, 411, 73–80.
- (10) Frackowiak, E.; Lota, G.; Pernak, J. Appl. Phys. Lett. 2005, 86, 164104.
- (11) Qu, J.; Truhan, J. J.; Dai, S.; Luo, H.; Blau, P. J. Tribol. Lett 2006, 22, 207-214.
- (12) Nainaparampil, J. J.; Eapen, K. C.; Sanders, J. H.; Voevodin, A. A. J. Microelectromech. Syst. **2007**, *16*, 836–843.
- (13) Nainaparampil, J. J.; Phillips, B. S.; Eapen, K. C.; Zabinski, J. S. Nanotechnology **2005**, *16*, 2474–2481.
- (14) Zhou, F.; Liang, Y. M.; Liu, W. M. Chem. Soc. Rev 2009, 38, 2590–2599.
- (15) Wasserscheid, P.; Gerhard, D.; Arlt, W. Chem. Eng. Technol. 2007, 30, 1475–1480.
- (16) Kubo, W.; Kambe, S.; Nakade, S.; Kitamura, T.; Hanabusa, K.; Wada, Y.; Yanagida, S. *J. Phys. Chem. B* **2003**, *107*, 4374–4381.
- (17) Pisarova, L.; Gabler, C.; Dorr, N.; Pittenauer, E.; Allmaier, G. *Tribol. Int.* **2012**, *46*, 73–83.
- (18) Bhushan, B.; Palacio, M.; Kinzig, B. J. Colloid Interface Sci. 2008, 317, 275–287.
- (19) Shimano, S.; Zhou, H.; Honma, I. Chem. Mater. 2007, 19, 5216-5221.
- (20) Kubo, W.; Kitamura, T.; Hanabusa, K.; Wada, Y.; Yanagida, S. Chem. Commun. 2002, 374–375.
- (21) Stathatos, E.; Lianos, P.; Zakeeruddin, S. M.; Liska, P.; Gratzel, M. Chem. Mater. 2003, 15, 1825–1829.

- (22) Susan, M. A.; Kaneko, T.; Noda, A.; Watanabe, M. J. Am. Chem. Soc. **2005**, 127, 4976–4983.
- (23) Neouze, M. A.; Le Bideau, J.; Leroux, F.; Vioux, A. Chem. Commun 2005, 1082–1084.
- (24) Szparaga, R.; Woodward, C. E.; Forsman, J. J. Phys. Chem. C 2012, 116, 15946-15951.
- (25) Chen, S. F.; Jiang, S. Y. Adv. Mater. 2008, 20, 335-338.
- (26) Shen, M. C.; Martinson, L.; Wagner, M. S.; Castner, D. G.; Ratner, B. D.; Horbett, T. A. J. Biomater. Sci., Polym. Ed. 2002, 13, 367-390.
- (27) Leckband, D.; Sheth, S.; Halperin, A. J. Biomater. Sci., Polym. Ed. 1999, 10, 1125-1147.
- (28) Zhang, X. Y.; Hua, Y. X.; Xu, C. Y.; Zhang, Q. B.; Cong, X. B.; Xu, N. Electrochim. Acta **2011**, *56*, 8530–8533.
- (29) Flower, H. M. Nature 2000, 407, 305-306.
- (30) Dalsin, J. L.; Hu, B. H.; Lee, B. P.; Messersmith, P. B. J. Am. Chem. Soc. 2003, 125, 4253-4258.
- (31) Buettner, K. M.; Valentine, A. M. Chem. Rev 2012, 112, 1863– 1881.
- (32) Liu, X. Y.; Chu, P. K.; Ding, C. X. Mater. Sci. Eng., R 2004, 47, 49-121.
- (33) Scovazzo, P.; Visser, A. E.; Davis, J. H.; Rogers, R. D.; Koval, C. A.; DuBois, D. L.; Noble, R. D. In *Ionic Liquids: Industrial Applications for Green Chemistry*, ACS Symposium Series 818; Rogers, R. D., Seddon, K. R., Eds.; American Chemical Society: Washington, DC, 2002; pp 69–87.
- (34) Chen, S.; Kobayashi, K.; Kitaura, R.; Miyata, Y.; Shinohara, H. ACS Nano **2011**, *5*, 4902–4908.
- (35) Shon, Y.-S.; Lee, S.; Colorado, R.; Perry, S. S.; Lee, T. R. J. Am. Chem. Soc. 2000, 122, 7556–7563.
- (36) Lee, S.; Shon, Y.-S.; Colorado, R.; Guenard, R. L.; Lee, T. R.; Perry, S. S. Langmuir 2000, 16, 2220–2224.
- (37) An, R.; Yu, Q. M.; Zhang, L. Z.; Zhu, Y. D.; Guo, X. J.; Fu, S. Q.; Li, L. C.; Wang, C. S.; Wu, X. M.; Liu, C.; Lu, X. H. *Langmuir* **2012**, *28*, 15270–15277.
- (38) Zhang, L. Z.; Li, L. Y.; Chen, S. F.; Jiang, S. Y. *Langmuir* 2002, 18, 5448–5456.
- (39) Li, W.; Bai, Y.; Liu, C.; Yang, Z. H.; Feng, X.; Lu, X. H.; van der Laak, N. K.; Chan, K. Y. *Environ. Sci. Technol.* **2009**, *43*, 5423–5428.
- (40) Marchand, R.; Brohan, L.; Tournoux, M. Mater. Res. Bull. 1980, 15, 1129–1133.
- (41) Li, W.; Liu, C.; Zhou, Y. X.; Bai, Y.; Feng, X.; Yang, Z. H.; Lu, L. H.; Lu, X. H.; Chan, K. Y. J. Phys. Chem. C 2008, 112, 20539–20545.
- (42) Sousa, S. R.; Manuela Bras, M.; Moradas-Ferreira, P.; Barbosa, M. A. Langmuir 2007, 23, 7046–7054.
- (43) Holland, N. B.; Marchant, R. E. J. Biomed. Mater. Res. 2000, 51, 307-315.
- (44) Cacciafesta, P.; Hallam, K. R.; Watkinson, A. C.; Allen, G. C.; Miles, M. J.; Jandt, K. D. Surf. Sci. 2001, 491, 405–420.
- (45) Zeller, A.; Musyanovych, A.; Kappl, M.; Ethirajan, A.; Dass, M.; Markova, D.; Klapper, M.; Landfester, K. ACS Appl. Mater. Interfaces 2010, 2, 2421–2428.
- (46) Gelb, L. D.; Gubbins, K. E.; Radhakrishnan, R.; Sliwinska-Bartkowiak, M. *Rep. Prog. Phys.* **1999**, *62*, 1573–1659.
- (47) Curry, J. E.; Zhang, F. S.; Cushman, J. H.; Schoen, M.; Diestler, D. J. J. Chem. Phys. **1994**, 101, 10824–10832.